Feature selection for Bayesian network classifiers using the MDL-FS score
نویسندگان
چکیده
منابع مشابه
Feature selection for Bayesian network classifiers using the MDL-FS score
When constructing a Bayesian network classifier from data, the more or less redundant features included in a dataset may bias the classifier and as a consequence may result in a relatively poor classification accuracy. In this paper, we study the problem of selecting appropriate subsets of features for such classifiers. To this end, we propose a new definition of the concept of redundancy in no...
متن کاملA New MDL-Based Function for Feature Selection for Bayesian Network Classifiers
Upon constructing a Bayesian network classifier from data, the accuracy of the resulting model can often be improved upon by selecting a subset of the available features. We show that the commonly used MDL function is not suited for feature selection. We introduce a new MDL-based function that is better tailored to this task. Our experimental results demonstrate that, with the new function, cla...
متن کاملBayesian Network Classifiers Versus k-NN Classifier Using Sequential Feature Selection
The aim of this paper is to compare Bayesian network classifiers to the k-NN classifier based on a subset of features. This subset is established by means of sequential feature selection methods. Experimental results show that Bayesian network classifiers more often achieve a better classification rate on different data sets than selective k-NN classifiers. The k-NN classifier performs well in ...
متن کاملFeature Selection for Ensembles of Simple Bayesian Classifiers
A popular method for creating an accurate classifier from a set of training data is to train several classifiers, and then to combine their predictions. The ensembles of simple Bayesian classifiers have traditionally not been a focus of research. However, the simple Bayesian classifier has much broader applicability than previously thought. Besides its high classification accuracy, it also has ...
متن کاملTowards the Optimal Feature Selection in High-Dimensional Bayesian Network Classifiers
Incorporating subset selection into a classification method often carries a number of advantages, especially when operating in the domain of high-dimensional features. In this paper, we focus on Bayesian network (BN) classifiers and formalize the feature selection from a perspective of improving classification accuracy. To exploring the effect of high-dimensionality we apply the growing dimensi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Approximate Reasoning
سال: 2010
ISSN: 0888-613X
DOI: 10.1016/j.ijar.2010.02.001